《人类的知识》

下载本书

添加书签

人类的知识- 第67部分


按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
就是在第n 次有利事例之后的概率。我们想知道在什么条件下,当n 无限增

加时,pn趋近于它的极限1。为此,我们必须考虑在概括性命题虚妄的条件

下,我们竟然观察到n 个有利事例,而没有观察到一个不利事例的概率。假
定我们把这个概率叫作Qn。凯恩斯证明如果Qn与PO之比在n 增加时趋近于
零,那么当n 无限增加时Pn趋近于它的极限1。这就要求Pn应为有限数,qn
在n 增加时应趋近于零。只靠归纳法我们不能知道这些条件在什么场合下得

到满足,如果存在这种场合的话。

让我们看一下p0应为有限数的条件。这就是说,被提出的概括性命题“凡
A 都是B”;在我们观察到不管是有利还是不利的事例之前就有几分可以成立
的希望,所以这至少是个值得研究的假设。按照凯恩斯的处理办法,概率p0

是对于一般与件h 而言的,这种与件看来可以包括除了A 是B 或不是B 的
实例以外的任何东西。很难不令人这样认为:这些与件是由至少有一部分确
已成立的类似的概括性命题所组成,从这些概括性命题我们引导出有利于“凡
A 都是B”的归纳证据。举例说,你想证明凡铜都导电。在用铜做实验之前,
你试过许多其它元素,发现每种元素在导电方面都表现出一种特有的行为。
于是你根据归纳得出结论:铜都导电或都不导电;因此你的概括性命题在你
进行观察之前就有了一种可以觉察到的概率。但是因为这种论证使用了归纳
方法,所以对于我们想做的事情没有什么用处。在我们做出所有元素在导电
方面都表现出一种特有的行为这个归纳之前,我们必须先问一下,在我们还
没有观察到这个归纳的真或伪的实例以前,它的概率有多大。我们可以接着
把这个归纳归入一个范围较大的归纳之中;我们可以说:“人们对于很多种
性质进行过试验,就每一种性质来说,每种元素都表现出一种特有的行为;
所以导电大概也是这样一种性质”。但是这种把归纳归入范围较大的归纳的
方法在实用上必然有一个限度,我们不管在什么地方停下来,在我们知识的
任何一种特定的情况下停下来,在凯恩斯的H 下所汇集的与件一定不是在只
有假定了归纳的前提下才与本问题有关的与件。

因此我们就得在归纳之外去寻找一些原则,这些原则在已知某种不属于
“这个A 是一个B”这种形式的与件的情况下,能使“凡A 都是B”这种概括
性命题具有有限的概率。已知这类原则,又已知适用这类原则的一个概括性
命题,归纳法就可以使这个概括性命题具有越来越大的概率,在有利的实例
数目无限增加时具有逐渐接近必然性并以其为极限的概率。在这样的论证当
中,我们所说的那些原则是前提,但归纳却不是这种前提,因为在我们使用
归纳的那种形式下,它是概率的有限频率说的一个分析性推论。

因此我们的问题是在尚未发现证据之前,找出使适当的概括性命题具有
概然性的一些原则。

我们还要看一看凯恩斯所说的另外一个条件,即当n 增加时qn应趋近于

零。qn是在尽管概括性命题为伪而所有前n 个实例却都是有利的实例时的概
率。让我们重复一遍以前说过的一个例子,假定你是个户口调查官员,从事
情查威尔斯某个村庄居民的姓名。你所调查的前n 个居民都叫威廉。那末qn

就是在居民不都叫威廉的情况下发生这件事的可能性。就这个实例说,当n

变得等于村中居民数的时候,村中再也不会有一个可以不叫作威廉的人,因

此qn 也就为零。但是一般来说这种无遗漏的列举是不可能的。一般来说,A
将是一类总在发生并且除非发生就无法观察到的事件,所以除非到了时间结
束,我们无法把A 没有遗漏地列举出来。我们也无法猜想A 有多少分子,甚
至无法猜想它是不是一个具有有限数分子的类。这样一些实例是我们在研究
凯恩斯所说的条件,即当n 增加时qn必然趋近于零时所必须考虑到的。

凯恩斯把这个条件用另一种形式表示出来,即把qn作为n 个不同概率的
乘积。假定Q1是在概括性命题为伪的情况下第一个A 将是一个B 的概率,Q2
是在概括性命题为伪和第一个A 为一个B 的情况下第二个A 将是一个B 的概
率,以此类推。那么qn就是Q1,Q2,Q3,。。Qn。的乘积,这里Qn。是在已
知概括性命题为伪和前n…1 个A 都是B 的情况下,第n 个A 将是一个B 的概
率。如果有任何一个小于1 的数,并且所有的Q 都小于它,那么n 个Q 的乘
积小于这个数的n 次乘方,并且在n 增加时趋近于零。这样,如果有某个不
能达到必然性的概率,例如p,使得在已知概括性命题为伪和n…1 个A 已经
是B 的情况下,在n 足够大的时候第n 个A 将是一个B 的机会永远小于p,
我们的条件就可以得到满足。

很难看出这种条件在经验界所提供的材料上会发生失败的情况。如果这
种条件发生失败的情况,那末如果ε是任何一个不管多小的分数,而n 是任
何一个不管多大的数,并且如果前n 个A 都是B,但并非所有的A 都是B,则
有一个使得第(n+m)个A 不是一个B 的可能性少于ε的数m。我们可以换
一种说法来讲这个问题。不管n 是什么数,设已知条件是前n 个A,但并非
所有的A,都是B。如果我们现在安排一下以后的A,不是按照它们出现的次
序而是按照它们是B 的概率的次序,那么这些概率的极限就是必然。这是在
这种条件失败的情况下必然要发生的事情。

显然这种条件比起前面所说的那种条件,即我们的概括性命题在有利事
例出现之前一定具有有限的概率,更少引起人们的兴趣并且更易于满足。如
果我们能够就一个已知的概括性命题找到一个保证产生这类有限概率的原
则,那么我们就有权利利用归纳法使得概括性命题具有概然性。但是在缺少
某种这类原则的情况下,我们却不能把归纳法当作一件使得概括性命题具有
概然性的东西。

在上面的讨论中,我按照凯恩斯的办法,只考虑“凡A 都是B”的证据。
但是在实用方面,特别是在一项研究的早期阶段,知道大多数A 是B 这一点
常常是有用的。例如,假定有两种疾病,其中一种是常见的而另一种是不常
见的,它们在早期阶段的症状非常相似。医生看到这些症状就得出结论,认
为他所处理的是那种比较常见的疾病,这样的做法是对的。那些我们相信没
有例外的定律通过适用于大多数但并非一切实例的先有的概括性命题而被发
现,这是很常遇到的事情。显然,建立‘大多数A 是B’这个概率所需要的
证据比起建立‘凡A 都是B’这个概率所需要的证据要少。

从实用的观点来看,这种区别并没有多大紧要。如果我们确实知道A 的
m/n 是B,那么M/n 就是下一个A 将是一个B 的概率。如果凡A 都是B 具有
概然性而不具有必然性,那么下一个A 将是一个B 仍然具有概然性。所以就
我们对于下一个A 的期待来看,确实相信大多数A 是B,或者认为凡A 都是
B 具有概然性,两者是相同的。在实际生活中最容易出现的情况是那种认为

大多数A 是B 具有概然性的情况。这种情况常常可以作为合理期待的充分根
据,因而成为实际生活中的指南。

第三章自然种类或有限变异的公设

为了使通过归纳得出的概然性接近必然性并以其为极限,在从事寻找所
需的公设上有两种要求。一方面,从单纯逻辑观点来看,公设必须有足够的
能力完成要它完成的任务。另一方面——这是更为困难的一种要求——它们
必须是这样一些公设,即某些439 依靠它们才具有正确性的推理从常识看来
或多或少是无可置疑的。例如,你找到同一种书籍的两本文字完全相同的复
本,你会毫不犹豫地认为它们有一个共同的作为产生它们原因的前件。就这
样一个实例来看,尽管每个人都承认这种推理,使它具有成立根据的原则却
并不明显,只有通过仔细的分析才能被人发现。我并不要求通过这种方法得
出的普遍性公设本身应具有某种不证自明的程度,但是我却要求在逻辑上依
靠它才能成立的某些推理将是这样一些推理,即除了怀疑派哲学家之外,任
何懂得这些推理的人都认为它们已经明显到无需再提的程度。当然,就一个
被提出的公设来说,一定不能存在任何可以认它为伪的正面理由。这个公设
特别应当是自相证实而不是自相否证;这就是说,假定它成立的那些归纳应
当具有与它一致的结论。

在本章内我想探讨一下由凯恩斯提出并被他称为“有限变异”的公设。
它与一种旧的公设,即自然种类的公设,即使不完全等同,也是十分相似的。
我们将发现这个公设作为归纳法的一种根据从逻辑上讲是有充分理由的。同
时我还认为我们可以用一种在某种程度上已经由科学证实了的形式把它表示
出来。因此它满足公设的三种要求当中的两种。但是照我看来,它并不能满
足第三种要求,即通过分析,可以从蕴涵于我们大家都能承认的论证中去发
现它。根据这个理由,我看有必要找寻另外的公设,这一点我将在以后几章
去做。

凯恩斯的公设是直接从他对于归纳法所做的讨论中产生的,是用来给予
某些概括性命题以某种有限的先在概率的,这种有限的先在概率凯恩斯已经
证明是必要的。在研究这个公设之前,先让我们来看一种论证,这种论证看
来好象证明我们并不需要什么公设,因为每个可以想象出来的概括性命题都
具有永不小于某个最小量的有限的先在概率。

让我们举一个在实际生活中发生的实例,这里在某种程度上近似于纯粹
的机遇。一艘大客轮上的旅客携带他们的行李到达海关。大多数行李上都有
许多标签,其中一个说明物主的姓名,另外440 一些则是他曾停留过的一些
旅馆的宣传广告。然后我们就可以考虑类似“每个有A 标签的皮箱也有B 标
签”这样的概括性命题的先在概率。为了完成逻辑上的类推,让我们假定也
有一些反面的标签,并假定没有任何皮箱既有“A”标签又有“不是A”的标
签,但是在这两种标签中每个皮箱不是有这一种就是有另外一种。在不知道
另外知识的条件下,如果我们随意选出A 与B 两种标签,那么每个有A 标签
的皮箱同时也有B 标签的机会是多少?因为每个皮箱不是具有B 标签就是具
有不是B 的标签,所以任何一个特定的皮箱具有B 标签的机会是一半。(我
现在假定我们关于B 毫无所知,特别是我们不知道它是正面的还是反面的标
签。)由此得出,如果我们的n 个皮箱具有A 标签,那么它们都具有B 标签
的机会是2n分之一。这是个有限数,并且如果N 是皮箱的总数,那么这种机
会永远不会小于2n分之一。

从上面的论证可以得出这个结论:如果宇宙中“事物”的数目是某个有

限数N,那么“凡A 都是B”这个概括性命题永远具有至少有1/2n 这样大的
先在概率。这是在每件事物都有A 性质的条件下的先在概率;如果只有某些
事物有这种性质,那么这种先在概率就会更大。所以从理论上讲,需要给凯
恩斯的归纳学说加以补充的一个充分的公设就是认为宇宙中“事物”数目是
有限的这个假定。这和认为时空点的数目是有限的那个假定具有相同的意
义。这又和认为性质的数目是有限的那个假定具有相同的意义,如果我们采
用前面一章所提出的看法的话,按照这种看法一个时空点乃是一组共现的性
质。

我确信这个假定从逻辑上讲是一个充分的公设。可是对它来说还存在着
两点反对的理由。一点是科学不能提供决定它是否为真的方法,因而它不是
自相证实的;另外一点是N 必然会大到这种程度,以致使得我们实际所能完
成的任何归纳都不具有说得过去的概然程度。因此让我们把上面这种提法只
作为一种新鲜的说法而搁在一边,转而探讨凯恩斯的一种比较实际的假设。

凯恩斯所需要的假设是某些种类的概括性命题比属于完全随意做出的概
括性命题具有更高的起始概率。为了这个目的,他提出一个公设,意思是事物可能具有的性质分为若干群,而且一个群在只要知道构成它的某些性质就可以被确定下来。他假定:

“任何一个已知物体的几乎数不尽的表面的性质都是从一个有限数目的

基因性质产生的,我们可以把这些基因性质叫作jjj ,。。。有些性质是完全从j 产生的,有些则是从j 与j 的结(,) 合产(,) 生(3) (2) (1) 的,以此类推。只从j1 产生的(1) 性质形成一群性质;从j(1) 1 与(2) j2 的结合产生的性质

形成另外一群性质,以此类推。因为基因性质的数目是有限的,所以群的数

目也是有限的。如果一组表面性质,比方说,是从j1 j2 j 三种基

因性质产生,那么我们就可以说这组性质确定了j1 ,j(,) 2 ,j(,) 3 这(3) 个群。

因为一般假定表面性质的总数大子基因性质的数目,并且因为群的性质是有
限的,由此可以得出这个结论:如果我们取两组表面性质,那么在没有相反
证据的条件下,存在着第二组性质属于由第一组确定的那个群的有限概率”。

上面所说的这类独立群的数目叫作宇宙(或者与一个特殊论证有关的宇
宙中的一部分)中“变异”的总量。凯恩斯把他的公设叙述如下:

“因此,作为类推法的逻辑基础,我们似乎需要某种这样的假定,即认
为宇宙中变异的总量受到这样的限制:没有一个物体复杂到它的性质可以分
为无限数目的独立群(就是那些除了结合存在以外还能独立存在的群);或
者说我们对之作出概括性命题的那些物体没有一个复杂到这种程度;或者至
少说虽然某些物体

小提示:按 回车 [Enter] 键 返回书目,按 ← 键 返回上一页, 按 → 键 进入下一页。 赞一下 添加书签加入书架